skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Galitski, Victor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum spin liquids are exotic phases of matter whose low-energy physics is described as the deconfined phase of an emergent gauge theory. With recent theory proposals and an experiment showing preliminary signs of Z 2 topological order [G. Semeghini , ], Rydberg atom arrays have emerged as a promising platform to realize a quantum spin liquid. In this work, we propose a way to realize a U(1) quantum spin liquid in three spatial dimensions, described by the deconfined phase of U(1) gauge theory in a pyrochlore lattice Rydberg atom array. We study the ground state phase diagram of the proposed Rydberg system as a function of experimentally relevant parameters. Within our calculation, we find that by tuning the Rabi frequency, one can access both the confinement-deconfinement transition driven by a proliferation of “magnetic” monopoles and the Higgs transition driven by a proliferation of “electric” charges of the emergent gauge theory. We suggest experimental probes for distinguishing the deconfined phase from ordered phases. This work serves as a proposal to access a confinement-deconfinement transition in three spatial dimensions on a Rydberg-based quantum simulator. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Shor's factoring algorithm, believed to provide an exponential speedup over classical computation, relies on finding the period of an exactly periodic quantum modular multiplication operator. This exact periodicity is the hallmark of an integrable system, which is paradoxical from the viewpoint of quantum chaos, given that the classical limit of the modular multiplication operator is a highly chaotic system that occupies the “maximally random” Bernoulli level of the classical ergodic hierarchy. In this work, we approach this apparent paradox from a quantum dynamical systems viewpoint, and consider whether signatures of ergodicity and chaos may indeed be encoded in such an “integrable” quantization of a chaotic system. We show that Shor's modular multiplication operator, in specific cases, can be written as a superposition of quantized A -baker's maps exhibiting more typical signatures of quantum chaos and ergodicity. This work suggests that the integrability of Shor's modular multiplication operator may stem from the interference of other “chaotic” quantizations of the same family of maps, and paves the way for deeper studies on the interplay of integrability, ergodicity, and chaos in and via quantum algorithms. Published by the American Physical Society2024 
    more » « less
  3. Glasses have the interesting feature of being neither integrable nor fully chaotic. They thermalize quickly within a subspace but thermalize much more slowly across the full space due to high free energy barriers which partition the configuration space into sectors. Past works have examined the Rosenzweig-Porter (RP) model as a minimal quantum model which transitions from localized to chaotic behavior. In this work we generalize the RP model in such a way that it becomes a minimal model which transitions from glassy to chaotic behavior, which we term the “Block Rosenzweig-Porter” (BRP) model. We calculate the spectral form factors of both models at all timescales larger than the inverse spectral width. Whereas the RP model exhibits a crossover from localized to ergodic behavior at the Thouless timescale, the new BRP model instead crosses over from glassy to fully chaotic behavior, as seen by a change in the steepness of the ramp of the spectral form factor. 
    more » « less